
B.Sc. PHYSICS SYLLABUS UNDER CBCS

For Mathematics Combinations

[2020-21 Batch onwards]

II Year B.Sc.-Physics: IV Semester

Course-IV: ELECTRICITY, MAGNETISM AND ELECTRONICS

Work load:60 hrs per semester	4 hrs/week

Course outcomes:

On successful completion of this course, the students will be able to:

- Understand the Gauss law and its application to obtain electric field in different cases and formulate the relationship between electric displacement vector, electric polarization, Susceptibility, Permittivity and Dielectric constant.
- Distinguish between the magnetic effect of electric current and electromagnetic induction and apply the related laws in appropriate circumstances.
- Understand Biot and Savart's law and Ampere's circuital law to describe and explain the generation of magnetic fields by electrical currents.
- Develop an understanding on the unification of electric and magnetic fields and Maxwell's equations governing electromagnetic waves.
- Phenomenon of resonance in LCR AC-circuits, sharpness of resonance,Q-factor,Power factor and the comparative study of series and parallel resonant circuits.
- Describe the operation of p-n junction diodes, zener diodes, light emitting diodes and transistors
- Understand the operation of basic logic gates and universal gates and their truth tables.

UNIT-I

1. Electrostatics: (6hrs)

Gauss's law-Statement and its proof, Electric field intensity due to (i) uniformly charged solid sphere and (ii) an infinite conducting sheet of charge, Deduction of Coulomb's law from Gauss law, Electrical potential-Equipotential surfaces, Potential due to a (i) dipole (ii)uniformly charged sphere

2.Dielectrics: (6 hrs)

Dielectrics-Polar and Non-polar dielectrics- Effect of electric field on dielectrics, Dielectric strength, Capacitance of a parallel plate condenser with dielectric slab between the plates, Electric displacement D, electric polarization P,Relation between D, E and P, Dielectric constant and electric susceptibility.

UNIT-II

3.Magnetostatics: (6 hrs)

Biot-Savart's law and its applications: (i) circular loop and (ii) solenoid, Divergence and curl of magnetic field, Ampere's Circuital Law and its application to Solenoid, Hall effect, determination of Hall coefficient and applications.

4. Electromagnetic Induction:

(6 hrs)

Faraday's laws of electromagnetic induction, Lenz's law, Self induction and Mutual induction, Self inductance of a long solenoid, Mutual inductance of two coils, Energy stored in magnetic field, Eddy currents and Electromagnetic damping

UNIT-III

5. Alternating currents:

(6 hrs)

Alternating current - Relation between current and voltage in LR and CR circuits, Phasor and Vector diagrams, LCR series and parallel resonant circuit, Q -factor, Power in ac circuits, Power factor.

6. Electromagnetic waves-Maxwell's equations:

(6 hrs)

Idea of displacement current, Maxwell's equations-Derivation, Maxwell's wave equation (with derivation), Transverse nature of electromagnetic waves, Poynting theorem (Statement and proof)

UNIT-IV

7. Basic Electronic devices: (12 hrs)

PN junction diode, Zenerdiode and Light Emitting Diode (LED) and their I-V characteristics, Zener diode as a regulator- Transistors and its operation, CB, CE and CC configurations, Input and output characteristicsofa transistor in CE mode, Relation between alpha, beta and gamma; Hybrid parameters, Determination of hybrid parameters from transistor characteristics; Transistor as an amplifier.

UNIT-V:

8. Digital Electronics: (12 hrs)

Number systems, Conversion of binary to decimal system and vice versa, Binary addition & Binary subtraction (1's and 2's complement methods), Laws of Boolean algebra, DeMorgan's laws-Statements and Proofs, Basic logic gates, NAND and NOR as universal gates, Exclusive-OR gate, Half adder and Full adder circuits.

REFERENCE BOOKS

- BSc Physics, Vol.3, Telugu Akademy, Hyderabad.
- Lectricity and Magnetism, D.N. Vasudeva. S. Chand & Co.
- Electricity and Magnetism, B.D.Duggal and C.L.Chhabra. Shobanlal& Co.
- Lectricity, Magnetism with Electronics, K.K.Tewari, R.Chand& Co.,
- Electricity and Magnetism, R.Murugeshan, S. Chand & Co.
- Principles of Electronics, V.K. Mehta, S.Chand& Co.,
- Digital Principles and Applications, A.P. Malvino and D.P.Leach, McGrawHill Edition.

Practical CourseIV: Electricity, Magnetism and Electronics

Work load: 30 hrs 2 hrs/week

Course outcomes (Practicals):

On successful completion of this practical course the student will be able to;

- Measure the current sensitivity and figure of merit of a moving coil galvanometer.
- > Observe the resonance condition in LCR series and parallel circuit
- ➤ Learn how a sonometer can be used to determine the frequency of AC-supply.
- > Observe the variation of magnetic field along the axis of a circular coil carrying current using Stewart and Gee's apparatus.
- Understand the operation of PN junction diode, Zener diode and a transistor and their V-I characteristics.
- > Construct the basic logic gates, half adder and full adder and verify their truth tables. Further, the student will understand how NAND and NOR gates can be used as universal building blocks.

Minimum of 6 experiments to be done and recorded

- 1. Figure of merit of a moving coil galvanometer.
- 2. LCR circuit series/parallel resonance, Q factor.
- 3. Determination of ac-frequency -Sonometer.
- 4. Verification of Kirchoff's laws and Maximum Power Transfer theorem.
- 5. Field along the axis of a circular coil carrying current-Stewart & Gee's apparatus.
- PN Junction Diode Characteristics
- 7. Zener Diode -V-I Characteristics
- 8. Zener Diode as a voltage regulator
- 9. Transistor CE Characteristics- Determination of hybrid parameters
- 10. Logic Gates- OR, AND, NOT and NAND gates. Verification of Truth Tables.
- 11. Verification of De Morgan's Theorems.
- 12. Construction of Half adder and Full adders-Verification of truth tables

RECOMMENDED CO-CURRICULAR ACTIVITIES:

MEASURABLE

- Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- Student seminars (on topics of the syllabus and related aspects (individual activity))
- Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams)
- Field studies (individual observations and recordings as per syllabus content and related areas (Individual or team activity)
- Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity)

GENERAL

- Group Discussion
- Visit to Research Stations/laboratories and related industries
- Others

RECOMMENDED ASSESSMENT METHODS

Some of the following suggested assessment methodologies could be adopted;

- The oral and written examinations (Scheduled and surprise tests),
- Practical assignments and laboratory reports,
- Observation of practical skills,
- Efficient delivery using seminar presentations,
- Viva voce interviews.
